The European Commission's science and knowledge service

Joint Research Centre

Incorporating novel methods into integrated approaches to testing and assessment of chemicals

20

Maurice WHELAN February 2018

> European Commission

No

General aims of chemicals legislation

- protection of human health and the environment
- efficient functioning of markets and trade
- innovation, competitiveness and sustainability

General scheme

Direct application of risk management measures based on generic risk considerations

health or the environment (BPs); allowed by the Scientific Committee on Consumer Safety (SCCS)

European Commission

Hazards that trigger child-resistant fastening or tactile warnings

Hazard Criteria	Child-resistant Fastenings	Tactile Warnings
Acute toxicity (category 1 to 3)	x	x
Acute toxicity (category 4)		x
STOT single exposure (category 1)	x	x
STOT single exposure (category 2)		x
STOT repeated exposure (category 1)	x	x
STOT repeated exposure (category 2)		x
Skin corrosion (category 1A, 1B and 1C)	x	x
Respiratory sensitisation (category 1)		x
Aspiration hazard (category 1)*	x	
Aspiration hazard (category 1)	x	x
Germ cell mutagenicity (category 2)		x
Carcinogenicity (category 2)		x
Reproductive toxicity (category 2)		x
Flammable gases (category 1 and 2)		x
Flammable liquids (category 1 and 2)		x
Flammable solids (category 1 and 2)		x
8		

ES – Exposure Scenarios

European Commission

European

Commission

Chantra Eskes - Maurice Whelan Editors

Advances in Experimental Medicine and Biology 156

Validating Alternative Methods for Toxicity Testing

2 Springer

This book provides information on **best practices and new thinking** regarding the validation of alternative methods for toxicity testing. It covers the validation of **experimental and computational methods** and **integrated approaches to testing and assessment**. Validation strategies are discussed for **methods employing the latest technologies** such as tissue-on-a-chip systems, stem cells and transcriptomics, and for methods derived from **pathway-based concepts** in toxicology

Commission

TSAR

- o Just launched !!
- Tracking from submission to acceptance
- Methods from EU, USA, Japan, Canada, Korea, and Brazil
- Access to method descriptions, key records and status comments

Reliability

Is there a reproducibility crisis in science?

More than 70% of researchers have tried and failed to reproduce another scientist's experiments

More than half have failed to reproduce their own experiments

Nature 533, 452-454 (2016)

Commission

Commission

23

Integrated Approach to Testing and Assessment (IATA)

An IATA integrates and weights all relevant existing evidence and guides the targeted generation of new data where required to inform regulatory decisions

OECD Guidance Document 255

25

Defined Approach

Six defining principles:

- 1. Defined toxicological endpoint
- 2. Defined regulatory purpose
- 3. Description of underlying rationale and mechanistic basis
- 4. Description of individual information sources used
- Description of how information is processed and combined
- 6. Consideration of uncertainties

Reporting Template for DA

OECD ENV/JM/MONO(2016)28

1	Summary	concise overview of the approach
2	General information	identifier, date, authors, updates, references, proprietary aspects
3	Endpoint addressed	e.g. skin sensitisation
4	Purpose	e.g. screening, hazard assessment, potency prediction
5	Rationale underlying its construction	including reason for the choice of information sources and their linkage to known biological mechanisms (e.g. key events)
6	Brief description of individual information sources used	including response(s) measured and respective measure(s), detailed descriptions in the dedicated template
7	Process applied to derive the prediction	e.g. sequential testing strategies, regression models, 2 out of 3 WoE, scoring systems, machine learning approaches, Bayesian networks, etc
8	Chemicals used to develop and test the approach	approach used for selection of training and test sets, relevant information on both sets: chemical names, composition, reference data (e.g. in vivo data), readouts, predictions
9	Limitations (and strengths) in the application of the approach	with regard to technical constrains or wrong predictions
10	Predictive capacity	misclassifications and unreliable predictions rationalised to the extent possible
11	Known uncertainties	how uncertainties related to approach, structure, information sources and benchmark data translate into prediction uncertainty

Reporting Template for DA

1	Summary	concise overview of the approach	
2	General info	identifier, date, authors, updates, references, proprietary aspects	
3	U	nclassified ENV/JM/MONO(2014)35	
4		ramisation de Cooperation et de Développement Économismes	-
5		JOINT RESEARCH CENTRE	e to
6	ENV/JM	European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM)	
7	MONO	Assessing performance of new or improved genotoxicity tests:	
8	0(2014)35	chemicals	tion on data),
9	Limitations application	Piled under: ChelliST, genetizative, EURL RCVAH, alamatives to animal leading Reference chemical selection is a key step in the development, optimisation and validation of alternative test methods. In light of newly	
10	Predictive	available data, the JRC's European Union Reference Laboratory for	possible
11	Known und	Alternatives to Animal Testing (EURL ECVAM), supported by a group of experts, has revised its recommended list of <u>genotoxic</u> and non- genotoxic chemicals for assessing the performance of new or improved	and
OEC	L D ENV/JM/MOI	in vitro genotoxicity test methods. VO(2016)28	opean nmission

OECD ENV/JM/MONO(2016)28

Commission

JOINT RESEARCH CENTRE

European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM)

C> EURL ECVAM > Regulators adopt mechanistically-based non-animal test methods to assess the potential of chemicals to cause skin allergy

European Commission > 3RC > EURI
Home
Latest News
About EURL ECVAM
EURL ECVAM Strategy Papers
EURL ECVAM Recommendations
EURI. ECVAM Status Reports
Validation & regulatory acceptance
Test Method Submission
EU-NETVAL Validation Laboratorie
Laboratories & Research Areas

31

Regulators adopt mechanistically-based non-animal test methods to assess the potential of chemicals to cause skin allergy Filed under: skin sensitisation, safety, EURL ECVAM, attematives to animal testing

EURL ECVAM validated methods adopted by the OECD paved the way for the revision of regulatory requirements for skin sensitisation under REACH

On 20 April, the REACH Committee, comprising representatives of the EU Member States, adopted a revision to Annex VII of the REACH regulation which means that validated and accepted non-animal tests will become the default information requirement for assessing whether chemicals have the potential to cause <u>skin sensitisation</u> i.e. to induce an allergic response following skin contact. This will affect registrants who need to meet the 2018 <u>REACH</u> registration deadline for chemicals produced or Imported in the range of 1-100 tonnes per year.

Apr 26, 2016

European Commission

European

Commission

Skin sensitisation

	Case Study	BloevallabilD
i)	Sensitiver polyncy gradiction Key event 14) (Givenden)	1
2	The artificial result exteroits model for predicting 12 NA SCR (Ninecia)	
	IDVDS for hazard and potency membration of a kinsemptisers (P&Q)	penatration (PSPE readel
	Terred system for producing sensitiving potential and potency of a substance (\$75) (Kee Corporation)	
ŝ	Sciene-based battery system for predicting periodicing potential and potency of a substance (1714) (Kao Corporation)	
	SATA for skin sensitization risk assessment (Skillever)	penetration modified OECD T0428
r	Weight of emberics in etca (TS for ster- hazed kiestification (BASP)	
1	STS for hazard identification of skin semiflious (BINM)	
,	(ATA (Depost)	
0	Becision strategy (L'Ordal)	
1	Integrated doctator atrategy for eVin semifluidion hazard (NICEATM)	
2	Conservus disclator true model for skin semilitization hazard prediction (KC JRC)	

REACH Annex VII revised legal text

Conventional toxicological endpoints

Human Toxicity			Ecotoxicity and Fate	
Acute Mammalian Toxicity (oral, dermal, inhalation)	Carcinogenicity	Mutagenicity/Genotoxicity	Persistence	
Neurotoxicity	Systemic Toxicity/ Organ Effects Repeated Dose Toxicity (oral, dermal, inhalation)	Respiratory Sensitization	Bioaccumulation	
Skin Initation and Corrosivity	Eye Irritation and Corrosivity	Endocrine Disruption	Chronic and Acute Aquatic Toxicity (on daphnia, algae and fish)	
Reproductive and Developmental Toxicity	Skin Sensitization			

- REACH and CLP (European Chemicals Agency, 2012)
- SIDS Manual for the Assessment of Chemicals (OECD, 2011)
- World Health Organization Human Health Risk Assessment (WHO, 2010)
- The GHS (United Nations, 2009)
- Assessment Criteria for Hazard Evaluation version 2.0 (US EPA DfE, 2011)
- Guide on Sustainable Chemicals (UBA, 2011)
- Washington State Department of Ecology Quick Chemical Assessment Tool (QCAT)
- NSF/GCI/ANSI 355 2011, Greener Chemicals and Processes Standard (ANSI, 2013)

What should we really be trying to predict?

What predictions can provide protection?

Extrapolating from early to late effect

Determination of a PoD

Extrapolating to low-effect levels

Estimating Intra-species variability

38

Extrapolating across dosing duration

Animal model

Conventional Toxicology

Extrapolating across dosing patterns

> Extrapolating across exposure metrics

Sources of 'familiar' uncertainty Estimating the impact

of missing studies

Observation of

effects

Extrapolating across agents

Extrapolating from *in vitro* or in chemico to in vivo data

WHO-IPCS (2014) Guidance document on evaluating and expressing uncertainty

Chemical

Inter-species

extrapolation

Uncertainty when combining inputs

- Ambiguity and excluded factors
- Relationship between components
- Distribution uncertainty
- Structure of the assessment
- Comparisons with independent data
- Dependency between uncertainties

Scientific Credibility

The willingness of others to use predictions to inform their decisions*

It is established through a process of **social epistemology** to develop a *shared* knowledge and understanding between key actors (i.e. developers, end-users, assessors, regulators, ...) through (personal) interactions

Confirmed committees	> Identify assumptions underpinning approach & their limitations	
Confirmed assumptions	> Collate observational evidence to justify each assumption	
Qualitative concordance	> Assess extent to which predicted behavioural trends match observations	
Quantitative concordance	> Quantify how predictivity with respect to target effect	
Explanatory power	> Explain observed phenomena and behaviour [effects] using predictions	
	> Explain situations & effects other than those on which approach is based	
	> Demonstrate approach predicts already known result (calibration)	
Testevent as however	> Demonstrate perturbation of input parameters produces expected result	
Internal conerence	> Demonstrate predicted behaviour disappears in appropriate circumstances	
	> Demonstrate predictions unchanged by elimination of all sources of error	
External consistency	Predict similar outcomes with an alternative approach[es]	
External consistency	> Assess reproducibility of approach in different environments	
Simplicity	 Demonstrate appropriate degree of complexity by removal of each core assumption producing a significant change in prediction 	
Simplicity	> Build narrative with appropriate detail that is both precise and concise	

Credibility Matrix for computational biology

Credibility Matrix for predictive approaches

Patterson & Whelan;

"Establishing the credibility of predictive toxicology approaches intended for regulatory purposes"

In preparation (nearly there!)

Strength: Availability, applicability and dependability

Knowledge:

Acquaintance with facts, truths and principles

Commission

.. process is as important as result!

In summary

- Clear shift in emphasis from individual methods to IATA.
- Transparency, clarity and thoroughness in describing IATA are fundamental to facilitate evaluation and acceptance.
- Key question how do we strike the right balance regarding *flexibility (IATA) versus prescriptiveness (DA)* to embrace new science but address the practicalities of regulatory implementation and industry needs.
- Validation needs to keep pace with innovation.
- Establishing credibility and confidence relies on constructive engagement throughout the process

European

Commission

Stay in touch

EU Science Hub: ec.europa.eu/jrc

Twitter: @EU_ScienceHub #ECVAM

YouTube: EU Science Hub

LinkedIn: Joint Research Centre

Facebook: EU Science Hub - Joint Research Centre

maurice.whelan@ec.europa.eu

ررزیم Dankie Gracias بکرار م

Köszönjük

感謝您 Obrigado

Спасибо Merci Takk

Koszonjuk Terima kasih Grazie Dziękujemy Dekojame Ďakujeme Vielen Dank Paldies Kiitos Taname teid 谢谢 Thank You Tak

Σας ευχαριστούμε υουρια

Bedankt Děkujeme vám ありがとうございます Tack

Terima kasih

You

Teşekkür Ederiz

감사합니다